

Accepted for publication at CHASE 2015

Sketching and Conceptions of Software Design

David Socha
Computing and Software Systems
University of Washington Bothell

Bothell, USA
socha@uw.edu

Josh Tenenberg
Institute of Technology

University of Washington Tacoma
Tacoma, USA

jtenenbg@uw.edu

Abstract—In this paper, we describe a study of sketching and
design within a software organization in which hundreds of hours
of video of development activity in situ were captured and
analyzed. We use the study as a basis from which to question how
researcher conceptions of software design—what it is, when and
where it occurs, and how it is accounted—affect the way in which
design is empirically studied. When researcher conceptions of
design substantially differ from the actual design practices of
those who are studied, researchers are at risk of seeing only what
they are looking for and in this way miss the very design
practices carried out by software developers in their quotidian
work that the researchers were hoping to characterize.

Index Terms—Software design, sketching, UML, inscriptions

I. INTRODUCTION
When we research software design, what is the object of

our study? We ask this question in the most literal sense: what
is it that we actually examine? What artifacts and/or behavior,
in what settings? For some, these questions seem self-
answering: if one wants to study software design, then of
course, one studies software design.

As obvious and tautalogous as this question might appear,
we ask it in order to make visible the presuppositions that
researchers have about design. The reason why it matters is that
as researchers, these presuppositions that we have about what
design is may prefigure the results that we obtain in our
empirical investigations. In short, we may only find what we
are looking for and in this way miss the very design practices
carried out by software developers in their quotidian work that
we were hoping to characterize. This is in fact, what we came
to discover about our own preconceptions related to the
empirical study of design that we undertook in a software
development organization.

We undertook this study with the purpose of understanding
software design practice [1]. We were interested in
characterizing software design in practice, particularly the ways
in which software developers use sketches and diagrams that
represent computational behavior and/or structure, a focus of
considerable interest in the software community [2]–[5].

Imagine our surprise on entering the field and finding that
there was little sketching activity occurring in the software
development organization we were studying! If they weren’t
sketching, what were they doing? And where and how did
design happen if they were doing little sketching? We changed
the focus of our data collection and analysis, turning from the
sketchpad and whiteboard to the pairing stations—the

computers where software developers did most of their work as
pairs sitting side by side. Collecting hundreds of hours of video
of these sessions over several months, along with videos of the
standup meetings that preceded pairing sessions, videos of
other meetings, hundreds of photographs, and dozens of hours
of observation and ethnographic interviews, we set out to
investigate how these software developers produced their work.
Whereas we had originally wondered where all of the design
activity was occurring if there was little sketching and
diagramming, only after immersion in this data for many
months did we begin to see what had been hiding in plain sight
the entire time: design was happening everywhere, all the time.
Our very conceptions of design had prevented us from seeing
the design that was there.

This paper, then, is a cautionary tale about how as
researchers our conceptions of software development are
embedded within every aspect of our empirical studies, and
how we can begin to overcome these conceptions, not only to
learn more about how software is actually constructed, but to
challenge the very way in which we conceptualize the
enterprise.

II. OUR PRESUPPOSITIONS
In a prior paper, we proposed a research study to investigate

how groups of professional software developers create and use
diagrams and diagramming in their authentic work, i.e. “in the
wild”’ [1]. Drawing from theories of situated and distributed
cognition, we conjectured that the design activities of
professionals in situ would differ substantially from the work
reported in studies based upon self-reports of students or of
professionals working in laboratory settings. Our plan was to
instrument a particular location in the organization under study
at which we assumed sketching “normally” occurs with video
cameras so as to capture not only the “what” of sketching but
also the “how.” And immediately after these sketching sessions
we would interview the participants, mediated by playback of
the video recordings, to capture the “why” of these sketching
sessions. We believed that fine-grained analysis of audio-visual
recordings of in situ work would illuminate important aspects
of software design not available in other studies such as the
Studying Professional Software Design workshop [4], [6]. As
this paper shows, our beliefs about analysing in situ work was
correct in practice, but not for the reasons we hypothesized.
This paper reports on the results of this study, and reflects on

8th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). Firenze, Italy, 2015.

the relationship between conceptions of design and how design
research is carried out.

III. ORGANIZATIONAL CONTEXT
Our data was collected at a 9 year-old software

development company in the Seattle area that employs
approximately 50 people. In 2011, the company was acquired
by a non-US parent organization that has continued to let the
company operate largely independently. The company’s
product is a software system that helps friends and family share
information. It has over 13 million users, includes a significant
backend Software-as-a-Service (SaaS) component, and has
both a web-based version and client versions for Macintosh,
Windows, iPhone, and iPad.

The founders of this company came from a technical
background and designed the company’s processes and
practices based upon a small set of values and principles
intended to address the question of: “How to operate a small
software team and make it its best?” Their goal was to optimize
for a self-organizing team of 5-14 people, instead of trying to
create practices that scale to larger groups. All 50 members of
the organization work in a single office with an open floor plan
(see Fig. 1).

Since the founding of this organization, the software
developers in it have used a mix of extreme programming [7]
and Scrum [8] practices, which they continually experiment
with and adapt. The developer stations (see Fig. 1), the physical
locations at which the software developers work, each consist
of a workstation configured to support pair programming.
These are concentrated in a central part of the office, so that
each developer is able to directly see, hear, and interact with
the other developers nearby, thereby providing “radical
collocation” [9].

While many agile teams do a daily standup, this
organization does three standups (which they refer to as
“huddles”) per day: one huddle before each of the three daily 2-
hour-long pair programming sessions. The intent is to provide
shorter feedback cycles among the developers to help them
better do their complex work. These huddles are done in the
huddle area located between the whiteboard walls and the
developer stations. This huddle space was intentionally located
directly between the developer stations and a large whiteboard
wall (labeled W and N in Fig. 1) in order to facilitate the
interplay between the activity at the developer stations, the
activity in the huddles, and the mediating artifacts on the
whiteboard wall [10].

Whiteboards have played a key role in these practices since
the company’s founding. In their first location, they often used
2-4 whiteboards to cover a wall. When they moved to their
current location, over which they had more control, they
painted seven entire walls with whiteboard paint and purchased
a half dozen small (3’x4’) portable whiteboards. These floor-
to-ceiling whiteboard walls and the smaller portable
whiteboards have become increasingly intertwined with the
company’s development practices, and are used for a wide
variety of purposes, including sketching and diagramming by
the software developers.

Fig. 1: Office floor plan

IV. DATA COLLECTION
Data collection began on October 17, 2012 as the

organization’s VP of Engineering led the first author on an
initial tour of the site to better understand the setting and
organizational context in order to plan how to collect audio-
video recordings of sketching sessions. While the tour revealed
many whiteboard surfaces in this organization, the VP
indicated that developers only sketched on whiteboards a few
times per week across the entire team. Furthermore, those
sketching sessions were rarely planned in advance, and were
usually in a conference room or on a portable whiteboard that
they wheeled to a convenient location for a discussion, such as
the couch area near the main entrance. And the sketching
sessions often were brief, lasting anywhere from a few minutes
to an hour or so. In other words, to record sketching sessions
we would have to be on site continuously and would only get a
few sessions per week.

Momentarily destabilized by learning that sketching and
diagramming were rare events, we sought instead the
“interactional hot-spots,” following the advice of Jordan and
Henderson [11]. We thus shifted our research gaze from
studying “sketching in the wild” to “collaboration in the wild.”
This collaboration was primarily located at the developer
stations and at the huddle area, and so we focused the bulk of
our data collection at these locations.

Based upon this reframe of our research study, the first
author iterated on the video collection, progressively improving
the recording setup and increasing the amount of data collected.
On November 19, 2012 he collected six short videos using a
handheld digital SLR, for a total of 54 minutes of video. On
November 27, 2012 he collected 6:18 hours of video using two
cameras. On January 24, 2013 he used four video cameras to
record 6.5 hours of activity at two developer stations.

Then in February 2014, the first author returned with 9
wide-angle GoPro cameras and six audio recorders to collect an
extensive dataset over an 11 day period. This dataset includes
380 hours of video from the developer stations, 17 huddles, and
other meetings; time-lapse images of the entire room over the
11 day period; screen recordings from some of the developer
workstations; and additional photographs. Although most of
these cameras and audio recorders were at fixed locations, two
of the video cameras were hand-operated, one by the first

author, and another by the software developers themselves,
who would bring the camera with them as they changed
location.

V. DATA ANALYSIS
Having abandoned sketching as a research focus, we carried

out analyses of the multiple ways in which this organization
uses the whiteboard to structure its work, as well as the ways in
which developer pairs create and sustain awareness while
working side by side, reported elsewhere [10], [12]. It was only
in doing those analyses, however, that we began to notice small
amounts of sketching activity at the whiteboard. We realized
that, given our extensive data collection, we had the means
available for gaining insight into how much sketching activity
was occurring, where it was occurring, and how it was being
used within this organization.

In answering “how much,” we were immediately
confronted with the issue of how to “count” in a way that is
“accountable” to our research community. We defined
sketching activity as any time a developer was making marks
on a surface (whiteboard, paper, iPad), pointing to such
surfaces, or orienting their body to these surfaces while in
conversation. Although counting even such things as bullet lists
written on the whiteboard (a frequent occurrence during
huddles) risks overcounting the amount of sketching, we did
not want to rule out this activity, since some researchers have
considered it to be sketching (e.g. “to do lists” are taken as
sketching in [13]). We did not, however, count any of the time
that individuals or pairs worked on the computer with keyboard
and mouse, since we were told that the developers never used
sketching/diagramming software, nor did we ever observe such
use. What this means is that there might have been instances in
which we counted particular activity as sketching, such as
writing a list on the whiteboard, when a similar list typed at the
keyboard of the computer would not have been counted.

To assess the amount of sketching activity done by this
group of software developers, we focused on the video from
two of the 11 days of data: February 19 and 21, 2014. These
two days contained most of the observed sketching activity,
including several sketching sessions at the huddle area, at the
couches, and in a conference room. Thus, the results reported
here may again overestimate the amount of sketching done in
this organization.

In order to more quickly browse the dozens of video files to
identify sketching, we created “thumbnail” images composed
of one frame from every 5 seconds of each video (see Fig. 2 for
a fragment of one of our thumbnail files). In the example
provided, one can see the point at which a green-shirted
software developer sits at the developer station. We were able
to quickly scroll through these files of thumbnails, exploiting
our (human) visual processing to identify those points when
sketching might be occurring. We could then examine these
places more carefully (both in the thumbnail files and in the
associated video files) to develop our counts.

Sketching activity observed over a contiguous sequence of
frames was accounted for as the duration between the first and
last of those frames. Sketching activity observed in a single

isolated frame was accounted for as 5 seconds of sketching
activity. Using the thumbnails may miss some sketching
activity, and in fact viewing one of the videos did reveal
several momentary sketching events that were not observed in
that video’s thumbnails.

To determine the proportion of time spent in sketching
activity, we similarly accounted for the amount of “active”
video: video in which people were at the video’s location, e.g.,
at the pairing station shown in Fig. 2. Only about half of the
video was “active”, since the developers were doing their work
with no instructions from us about where to work and there
were more developer workstations than pairs of developers.

Table 1 shows the duration of “active” time and sketching
activity for these two days, categorized by 5 loci of work:
during huddles, during post-huddle discussions, at pairing
stations, at couches, and in conference rooms.

The “location %” column of sketching activity shows the
percent of that location’s active time during which sketching
was observed. The “total %” column shows this location’s
sketching activity as percent of the total time across all
locations. During the 39:45 “active” hours, we identified 6:02
hours (15%) of sketching.

Fifteen percent of the time may appear to be a considerable
percentage devoted to sketching. But a finer-grained analysis
reveals a different story. First, and importantly, the types of
sketching differed by location. Huddles consisted of 5% of this
video, and included sketching 24% of the time. This sketching
activity consisted almost exclusively of a bookkeeping activity
in which developers used the “parking lot” section of the
whiteboard wall to inscribe brief notes of topics to discuss at
the end of the huddle [10]. This is not the type of sketching
activity commonly associated with “software design”.

Post-huddle discussions comprise 7% of this video, and 6%
of the total sketching time. Most of this time (82%) involved
sketching on the whiteboard during design discussions.

Fig. 2: Portion of thumbnail of video

Table 1: Amount of "active" time and sketching activity on Feb 19 and 21

 “Active” Sketching activity
Location hh:mm % hh:mm location % total %
Huddle 02:02 5 00:29 24 1
Post huddle 02:58 7 02:26 82 6
Pairing station 31:08 78 00:22 1 1
Couches 00:39 2 00:39 100 2
Conference room 02:59 8 02:05 70 5
TOTAL 39:45 100 06:02 15 15

Pairing stations consisted of 78% of the video time
analyzed and 1% of the total sketching time. Most of this
sketching, however, was a 19-minute session during which a
solo developer worked on his own “Personal Shield”, part of a
team building activity. The remainder of the sketching time
was four sessions in which a developer briefly wrote on a
sketchpad, for a total of 2:54 minutes. Thus, only 2:54 minutes
(0.16%) of the 31:08 hours of pairing station video had
sketching that might have been related to software design.

The video from the couches consisted of 2% (39 minutes)
of the video that was analyzed. It was from a single design
discussion between two developers sitting in separate couches.
During this time, one of the developers was continuously
making inscriptions on his iPad, which was visible only to him.
In addition to the sketching, both developers made extensive
use of “air sketches” enacted via hand and arm gestures. Our
definition of “sketching” is restricted to making or referring to
inscriptions or marks on a physical surface, and thus did not
include this “air sketching”.

Conference rooms consisted of 8% (2:59 hours) of the
video, 70% of which involved making inscriptions or referring
to inscriptions. This was the continuation of the design
discussion between the two developers that had begun at the
couches. During this time, the two developers spent only a few
minutes actually making marks on the whiteboard. The rest of
the sketching time was referring to these inscriptions, or one of
the developers making marks on his iPad, which, once again,
were not visible to the other developer, except for one brief
moment. The whiteboard sketch that was drawn, from the most
extensive sketching session during the two days analysed, was
also remarkably simple, shown in Fig. 3.

At the same time, in analysing this conference room
episode in more detail, we came to see that it complicates prior
notions of sketching and accounting for the duration and uses
of sketches. “Sketching” involves not only making marks on a
surface, since this only accounted for a small percentage of the
time taken during this session. The software developers also
spent considerable time augmenting the sketch with words,
gestures, and deictics. They also spent time during this session
oriented to the sketch, but rather than augmenting what was
drawn, they spoke about alternatives in relation to what they
had sketched. And finally, there was a considerable part of this
session, in which the developers sat nearby the sketch, but
never oriented their bodies toward it nor made any verbal
reference to it. Which of these activities, then, is sketching? In
counting all of it, we drew an analytical boundary that is
somewhat artificial, a point we return to in the Discussion.

Fig. 3: Sketching from longest sketching session of Feb 19 and 21. The

two ovals and lines in the top middle were there before this session began.

VI. DISCUSSION
What conceptions of design are made visible in the study

reported above? When we speak of “conceptions,” we do not
only mean those explicit ideas “in mind.” We mean as well the
inchoate, enacted conceptions as embedded in the way in
which we carried out the study and the participants carry out
their everyday work. In the earliest published description of our
research, we discuss not design, but “the situated use of
sketches and diagrams by expert software practitioners in their
everyday activities in the workplace” [1]. We presupposed that
these sketches were created as part of a design process, and
hence there was no need to explicitly link “sketch” to “design.”
What we did not assume, and what was the very object of our
research study, was the specific nature of the semiotic marks
that software developers make on media such as whiteboards.
Were they UML? Were they boxes and arrows? Were they
bullet lists? Were they something else entirely? In addition, we
did not assume that the meaning was “in” the sketches created,
but rather, following Roth, that sketches “in everyday
settings … become apparently fused to the things or contexts
that they describe. … The graph is relevant together with the
world [that the creator] inhabits together with other people and
objects that surround them” [14]. Thus, in going to the
workplace to observe and record software development “in the
wild,” we hoped to overcome what we saw as limitations in the
research on software design in which software designers were
studied in contrived (laboratory) settings.

In wanting to instrument a conference room or specific
place within the organization that we studied, however, we
presupposed that design qua sketching happened primarily
(only?) in a special place at regular times. We assumed, as do
Baltes and Diehl [13, p. 530], that “[s]ketches and diagrams
play an important role in the daily work of software
developers.” Thus, capturing this activity should be
unproblematic: we simply go to the special place of daily
sketching activity and turn on our video recorders; what could
be simpler? As we recount above, however, our research
participants quickly informed us that, though, yes, they
occasionally do some sketching, that it was not where the
action was. The interactional hot spots, “sites of activity for
which videotaping promises to be productive” [11, p. 43], were
at the pairing stations and huddle area, and so this is where we
focused our attention. As a result, sketching dropped from our
analytic gaze.

Several months later, when given the opportunity to return
for further data collection, we “over sampled,” by placing
cameras and microphones in as many places as our participants
would allow and for which we had resources. Our focus was
again on the pairing stations, but we captured data in many
other locations: the huddle area, conference rooms, the seating
area. It was only on seeing the most fragmentary glimpses of
sketching, bits of ephemera that disappeared almost as quickly
as they erupted—a box hastily drawn on the whiteboard wall
by a pair of software developers after a huddle, a list jotted on a
notepad by a pair of developers at a pairing station—that
sketching re-emerged for us as an object of study. For what
these small glimpses made salient was the almost complete

absence of sketching. Was this really the case? And if so, then
what did it mean for how these software developers do design?

As the above analysis indicates, all evidence suggests that
sketching, of the sort that involves anything more elaborate
than a bullet list or a couple of boxes and arrows, is a rare
occurrence at this organization. But this does not mean that this
organization does not do design as far as they conceive it.
Design and sketching are not equivalent, nor does one imply
the other. The developers at this organization deliberately
structure their work process and division of labor so that all
developers work at all levels of detail; there is no division of
labor between “designers” and “coders,” each of whom
specializes in a different level of detail. As one of the principals
in the organization elaborates in response to a question about
doing “design” in a traditional, UML-style fashion: “we were
an agile shop. And we didn’t want to work that way because
we didn’t think it was productive. And so yeah, that's a very
sort of waterfall-style approach. The architect sits on high,
figures everything out beforehand, maybe doing sketches or
who knows what, and then passes the design off. But we didn’t
do that.” This organization did not do that because what this
“waterfall-style” division of labor implies is that there are
distinct “phases” of software development in which design
happens at a particular time by particular people, resulting in an
explicitly represented design artifact whose meaning is
discernible to someone else charged with writing code
consistent with it.

Rather, the software developers whom we studied viewed
design as distinctly and deliberately not limited to a particular
phase or particular people, a bounded temporal event within a
predefined software lifecycle. Rather, the developers saw
themselves as doing design work continuously and everywhere.
“So the thing is the way I do it – the only way I think that’s
reasonable to do it is to go constantly back and forth, try not to
figure out all of the design beforehand, but only try to figure
out some of it, like maybe even just think of some of it in your
head basically, and then go and start typing, right? And then
refine it and continue back and forth and back and forth and
back and forth, so almost constantly.”

One interpretation of our data, then, is that although there
was little sketching of the kind described in most prior studies
of software sketching and design, there was continuous
designing. The hours and hours in which pairs sit together at
the pairing stations looking at the code were never simply
“implementation” as distinct from “design,” but were a
constant back-and-forth between coding and designing.

Designing was always there, a constant presence, and yet
(until recently) invisible to us in its ubiquity. When the paucity
of sketching became noticeable to us, we began to reconsider
the conceptions of software design we had tacitly embedded
within our research design, an assumption of a near-
equivalence between sketching and designing; designing
happening in particular places at particular times by particular
people. Only as a result of extensive video capture of the
development activity and subsequent analysis did we begin to
see how our initial research design embedded a tacit
assumption of design that carried with it vestiges of a waterfall

model that we ourselves had long ago abandoned. In looking at
the pairing stations, the huddle areas, and the larger patterns of
interaction within the developer space, this extensive video
capture allowed us to trace the ways in which this organization
structures its development activities. As a result, we were able
to see the enactment of Agile practices of continuous and
iterative design through the deliberate structuring of this
organization’s software development labor and work processes.

A. Researcher Conceptions Of Design
What then, are the implications of this study on the current

research discourse concerning software design and sketching?
In particular, how do researcher conceptions of design figure
into the ways in which empirical researchers structure their
studies of design?

The study of sketching and diagramming by software
developers has received considerable interest by empirical
researchers over the last decade. In some of this research, the
connection between design and sketching is explicit, justified
by software development being characterized as a design
discipline, and as such it follows that sketches are important.
For instance, Cherubini et al. begin their research report
concerning how and why software developers use sketches
with: “Diagrams are important tools in every design and
engineering discipline” [5, p. 557]. Similarly, Walny et al begin
a report of their study on sketching in software development
with: “Visualization through sketching and diagramming plays
an important role in the design process in various domains,
including architecture, design, and engineering” [15, p. 1]. For
others, sketches are necessarily used in software design
because of the complexity of the relations between the
computational units: “Software design is a highly visual
activity, where diagrams are used for brainstorming, grounding,
and communicating ideas and decisions [6]. This is particularly
true for the object-oriented (OO) paradigm, which involves
large numbers of entities and complex relations between them”
[16, p. 261]. Others use the term “modeling” instead of design:
“This empirical study complements and resonates with other
studies of UML use in industry, finding (as others do) that
practitioners take a broad view of what constitutes ‘modeling’”
[2, p. 11]. And for some researchers, the connection between
sketching and design is implied: “Over the past years, studies
have shown the importance of sketches and diagrams in
software development” [13, p. 530].

What all of these conceptions of the relationship between
sketching and software development have in common is the
relative equivalence of design activity and sketching, that one
implies the other. The following syllogism thus captures the
essential argument that these researchers make: 1) (all) design
disciplines use sketches as essential representations for design,
2) software development is a design discipline, therefore 3)
software developers use sketches as essential representations
for design. If we study sketching, then by virtue of its use in
design disciplines in general, we will be studying design in
software development. And if we are to study design, then by
virtue of the importance of sketching for these disciplines, we
will need to study sketching. Design qua sketching is distinctly
not coding: these are distinct activities, using distinct notations.

The problem with researchers presupposing that design is
sketching is design, is that in those organizations who carry out
an enactment of Agile design similar to the organization
described above, the vast majority of design activity will be
overlooked. It will simply not be accounted as design, but will
instead be seen as “coding” or “implementation” or “pair
programming” if it is considered at all. Take the survey by
Baltes and Diehl [13, p. 533], for instance, that asks software
developers “When did you create your last sketch or diagram,”
“How many persons contributed to the sketch/diagram” and
similar. If given to software developers from an organization
like the one that we studied, such a survey, although perhaps
characterizing the few designs that are created, will miss the
lion’s share of the design activity, at least as far as how the
participants themselves construe it.

Design as sketching, as a phase of activity distinct from
coding, is sometimes so embedded within a research design
that it goes unremarked by researchers. Or, if it is discussed, it
is simply to name the phase, for example as initial or early
design activity [4], [6]. For instance, consider the empirical
study protocol described by Petre et al. [4] that served as the
basis for the NSF-sponsored workshop Studying Professional
Software Design in 2010 attended by 54 design researchers and
resulting in a special issue of Design Studies [4] and IEEE
Software [6]. This protocol was developed to answer the
research question: “What do software designers do when they
design software” [4, p. 536]? Video recordings were analyzed
of three pairs of software developers who were given a design
prompt, and “each pair … worked together at a whiteboard for
two hours” [6, p. 29]. “Furthermore, it asked that the designers
consider how to model the software system, as well as how
users would interact with the system” [4, p. 536]. The design
prompt itself explicitly states that “[t]he result of this session
should be: the ability to present your design to a team of
software developers who will be tasked with actually
implementing it [emphasis in original]” [4, p. 544].

In placing the participants at the whiteboard, the research
design naturalizes the whiteboard as a site of design activity, in
contrast to, for instance, the pairing stations at which most of
the design activity occurred at the organization that we studied.
The research setting itself then, in the very way in which the
researchers were physically arranged and given particular
materials, presupposes design as a sketching activity, or at least
an activity in which inscriptions are to be recorded on the
whiteboard. Further, by explicitly telling the research
participants to model a system that will be implemented by
others, the researchers are presupposing a conception of design
in which a “design” is a model that is handed off in toto,
“thrown over the wall” from one group of software developers
to another. Design is a distinct phase, with a clear beginning
and end, which takes place at the whiteboard, and results in a
design representation (a “model”) that is then used to guide the
coding phase. In waterfall fashion, labor is divided by
specialization and the software process is organized as a set of
phases in an assembly-line fashion. This is not the conception
of design that we observed. At the organization that we studied,
the designers are the implementers; there is no distinction

between designers and developers. One result is that the details
brought into the design discussions span multiple levels of
abstraction from objects in the existing codebase to possible
alternative architectural designs to experiences from using
competitors’ systems to ideas for creating strategic competitive
business advantages. They range from existing implementation
details to business design–all based upon years of shared
history. And designs do not have to be externally represented
for anyone but the software developers themselves to use; they
are not handed off.

The other complexity that lab-based and similar research
protocols gloss concerns the boundary between design and
non-design activity. For if design is a distinct phase, when does
it begin and end? In the activity that we studied, there are no
researchers external to the setting designating an arbitrary start
and end time for the activities observed within the setting.
Rather, the software developers simply go about their work.
When they carry out their inscriptional activity, there is no one
there to mark a boundary. Before they move to a whiteboard,
they might be talking about a particular problem or concern,
and at some point, the pair decides to move to the whiteboard.
They make a few marks on the board, continue talking, make
more marks, talk some more. Some of the marks look box-like,
some are labels, some are lines and arcs. They move away from
the board, continue talking about the inscriptions, making a
hand-shape that gesturally mirrors an inscription on the board
in order to index the discussion that occurred in and around
when that inscription was written. If design is everywhere and
all the time, then such activity is non-problematic, for
boundaries do not need to be precisely determined in order to
do such things as determine the ratio of time spent in one
activity as compared to another. But if design is conceived as
an activity distinct from coding, from planning, from
determining requirements, then what are the boundaries
between these activities? When does “sketching” or “design”
activity begin and when does it end? Is it only at those
moments when marks are made on the board? When a box or
arrow or freehand drawing is made but not the labels? When
the participants are at the location at which the sketch is made
but not when they move away from it?

These definitional questions are not simply academic, since
for research designs involving surveys and interviews, the very
interpretation of the questions asked are determined each time
anew by the respondent. And unfortunately, such
interpretations are invisible to the researcher. For instance, in a
survey study by Baltes et al. [13, p. 533] the respondents were
asked “When did you create your last sketch or diagram” and
“How much effective work time went into the creation and
revision of the sketch/diagram up to now?” Does a “to do” list
count as a “sketch”? And if so, how much time is to be
accounted as “work time” in its “creation” and “revision”?
Such matters of interpretation are left to the respondents to
construe in their own way, with responses aggregated together
using standard statistical analysis methods. How then are we as
researchers to construe these aggregated results? How then
have the respondents made these distinctions? And to what
range of settings do these results apply?

These problems of interpretation and construal do not
disappear, however, even if the researchers are the only ones
making these determinations. In the study presented above, in
order to make any claims about the amount of time in which
design sketches and diagrams are used within the organization
we studied, we had to make a number of choices for purposes
of accounting. What inscriptions, in what media, do we count
as a sketch or diagram? When does the sketching and
diagramming activity begin and end? Although we document
these choices above, providing our rationale for our accounting
scheme, there are nonetheless several somewhat arbitrary
choices that we have made purely for purposes of drawing
sharp analytic boundaries. To some extent, we draw these
boundaries, recognizing their artificiality, in service of an
argument in which we abandon these very boundaries.

VII. CONCLUSION
There is no neutral way to study software design; empirical

researchers always take a position. Not only are researchers
“located” in a physical space with the individuals whom they
study, they are similarly located within a conceptual space
shared with a research community. How researchers
conceptualize their objects of inquiry determine the questions
they ask, the methods they use in answering them, and the
interpretations that they give to the data they collect. It is into
this conceptual space, the space in which our very notions of
what software design is, that we have placed this paper. The
story of the particular study of software design that we
undertook within a software organization might be titled “Sin
and Redemption.” Our sin, venial and perhaps unavoidable,
was to have a particular conception of software design around
which we planned our data collection, which turned out to be
inconsistent with the design practices of the developers whom
we were studying. One can hardly enter the field without any
preconceptions about what one intends to study. Our
redemption was first in going to the field at all (rather than
working in the lab), in watching and listening to the software
developers to find their “interactional hot-spots,” and “over
sampling” so that we had extensive data across the organization
over time and space. It was only in noticing the small amount
of non-trivial sketching that we recognized how our original
plan for data collection embedded a “waterfall-style”
conception of design. In this conception, design is viewed as a
particular phase, neatly delineated from other development
activities such as coding, testing, and requirements gathering, a
conception that conflicted with the enacted practices of the
software developers under scrutiny.

If research on software development is going to provide
deeper insights into how software development is and could be
practiced, then it is important that we not only seek what we
hope to find. We must also look beyond the narrow compass of
our own preconceptions to see the conceptions and practices of
those whom we study.

ACKNOWLEDGMENT
We thank our study participants who have been so kind to

extend to us the level of trust that is critical for this type of

research. This work was partially funded by a 2012-2013
Worthington Distinguished Scholar award, and a UW Bothell
CSS Graduate Research award to the first author from the
University of Washington, Bothell. Thanks to Natalie Jolly for
critical reading and commentary of early drafts.

REFERENCES
[1] D. Socha and J. Tenenberg, “Sketching software in the wild,” in

Proceedings of the 35th International Conference on Software
Engineering (ICSE 2013), 2013, pp. 1237–1240.

[2] M. Petre, “UML in practice,” in 35th International Conference
on Software Engineering (ICSE 2013), 2013.

[3] A. Baker and A. van der Hoek, “Ideas, subjects, and cycles as
lenses for understanding the software design process,” Des.
Stud., vol. 31, no. 6, pp. 590–613, Nov. 2010.

[4] M. Petre, A. van der Hoek, and A. Baker, “Editorial,” Des.
Stud., vol. 31, no. 6, pp. 533–544, Nov. 2010.

[5] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: how and why software developers use
drawings,” in Proceedings of the SIGCHI conference on Human
factors in computing systems - CHI ’07, 2007, vol. 1, pp. 557–
566.

[6] A. Baker, A. van der Hoek, H. Ossher, and M. Petre, “Guest
editors’ introduction: studying professional software design,”
IEEE Softw., vol. 29, no. 1, pp. 28–33, Jan. 2012.

[7] K. Beck, Extreme Programming Explained: Embrace Change.
Reading, MA: Addison-Wesley Professional, 1999.

[8] K. Schwaber and M. Beedle, Agile Software Development with
Scrum. Upper Saddle River, NJ: Prentice Hall, 2002.

[9] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson, “How does
radical collocation help a team succeed?,” in CSCW’00, 2000,
pp. 339–346.

[10] D. Socha, T. Frever, and C. Zhang, “Using a large whiteboard
wall to support software development teams,” in Proceedings of
the 48th Hawaii International Conference on System Sciences
(HICSS’15), 2015.

[11] B. B. Jordan and A. Henderson, “Interaction analysis:
foundations and practice,” J. Learn. Sci., vol. 4, no. 1, pp. 39–
103, 1995.

[12] J. Tenenberg, W.-M. Roth, and D. Socha, “From I-awareness to
we-awareness in CSCW,” Comput. Support. Coop. Work. (in
press).

[13] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp.
530–541.

[14] W.-M. Roth, Toward an Anthropology of Graphing: Semiotic
and Activity-Theoretic Perspectives. Kluwer Academic
Publishers, 2003.

[15] J. Walny, J. Haber, M. Dork, J. Sillito, and S. Carpendale,
“Follow that sketch: lifecycles of diagrams and sketches in
software development,” in 2011 6th International Workshop on
Visualizing Software for Understanding and Analysis
(VISSOFT), 2011, pp. 1–8.

[16] U. Dekel and J. Herbsleb, “Notation and representation in
collaborative object-oriented design: an observational study,” in
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and
applications, 2007, pp. 261–280

